(navigation image)
Home American Libraries | Canadian Libraries | Universal Library | Community Texts | Project Gutenberg | Biodiversity Heritage Library | Children's Library | Advanced Microdevices Manuals | Linear Circuits Manuals | Supertex Manuals | Sundry Manuals | Echelon Manuals | RCA Manuals | National Semiconductor Manuals | Hewlett Packard Manuals | Signetics Manuals | Fluke Manuals | Datel Manuals | Intersil Manuals | Zilog Manuals | Maxim Manuals | Dallas Semiconductor Manuals | Temperature Manuals | SGS Manuals | Quantum Electronics Manuals | STDBus Manuals | Texas Instruments Manuals | IBM Microsoft Manuals | Grammar Analysis | Harris Manuals | Arrow Manuals | Monolithic Memories Manuals | Intel Manuals | Fault Tolerance Manuals | Johns Hopkins University Commencement | PHOIBLE Online | International Rectifier Manuals | Rectifiers scrs Triacs Manuals | Standard Microsystems Manuals | Additional Collections | Control PID Fuzzy Logic Manuals | Densitron Manuals | Philips Manuals | The Andhra Pradesh Legislative Assembly Debates | Linear Technologies Manuals | Cermetek Manuals | Miscellaneous Manuals | Hitachi Manuals | The Video Box | Communication Manuals | Scenix Manuals | Motorola Manuals | Agilent Manuals
Search: Advanced Search
Anonymous User (login or join us)
See other formats

Full text of "Scientific Papers - Vi"

msider free vibrations. These are of necessity subject to damping, owing • the communication of energy to the medium, forthwith propagated away; id their persistence depends upon the nature of the resonator as regards iass and spring, and not merely upon the ratio of these quantities.
Taking first the case of a single resonator, regarded as bounded at the irface of a small sphere, we have to establish the connexion between the lotion of this surface and the aerial pressure operative upon it as the result '. vibration. We suppose that the vibrations have such a high degree of arsistence that we may calculate the pressure as if they were permanent, hus if ty be the velocity-potential, we have as before with sufficient approxi-tation
_ 1 - ikr     1 d^ __     1
"VT / 66 — ~"~                    ?                  7       —  """"     I 5
T /            r          a dr         r-
> that, if p be the radial displacement of the spherical surface, dpjdt = — a/r2, ad
.gain, if or be the density of the fluid and Sp the variable part of the
............... (48)
•hich gives the pressure in terms of the displacement p at the surface of a phere of small radius r. Under the circumstances contemplated we may se (48) although the vibration slowly dies down according to the law of eint, rhere n is not wholly real.
If M denotes the " mass " and n the coefficient of restitution applicable ) p, the equation of motion is
r if we introduce eint and write M' for M + ^ircrr3,
nd if we write n = p + iq,
(49) (50)
'),    q = p . 2irtrkr* / M' ................... (51)
f T be the time in which vibrations die down in the ratio of e : 1, T= l/q.
If there be a second precisely similar vibrator at a distance R from the rst, we have for the potential
R. VI.
19es further examination'.